Aller au contenu

Reproduction Scripts

This page provides all Python scripts needed to reproduce the 8 validation tests of TMT.

Prerequisites

Installing dependencies

pip install numpy scipy matplotlib astropy

Data structure

Maitrise-du-temps/
├── data/
│   ├── sparc/
│   │   ├── SPARC_Lelli2016c.mrt
│   │   └── MassModels_Lelli2016c.mrt
│   └── Pantheon+/
│       └── Pantheon+SH0ES.dat
└── scripts/
    └── [scripts below]

Tests and Scripts Table

Test Result Script Data
SPARC rotation curves 156/156 (100%) test_TMT_v2_SPARC_reel.py SPARC
r_c(M) law r = 0.768 investigation_r_c_variation.py SPARC
k(M) law R² = 0.64 test_TMT_v2_SPARC_reel.py SPARC
Weak Lensing Isotropy -0.024% test_weak_lensing_TMT_vs_LCDM.py COSMOS
COSMOS2015 Mass-Env r = 0.150 test_weak_lensing_TMT_vs_LCDM_real_data.py COSMOS2015
SNIa by environment pred: 0.57% test_3_predictions_TMT.py Pantheon+
ISW Effect pred: 18.2% calculate_ISW_improved.py Planck
Hubble Tension 100% resolved calibrate_TMT_v23_cosmologie.py Planck+SH0ES

Data Sources

SPARC (Included in repository)

SPARC data is included in data/sparc/. Original source:

  • URL: http://astroweb.cwru.edu/SPARC/
  • Reference: Lelli, McGaugh & Schombert (2016), AJ 152, 157
  • Files:
    • SPARC_Lelli2016c.mrt: Properties of 175 galaxies
    • MassModels_Lelli2016c.mrt: Rotation curves

Pantheon+ (Included in repository)

Pantheon+ data is included in data/Pantheon+/. Original source:

COSMOS2015 (External download)

  • URL: CDS VizieR
  • Reference: Laigle et al. (2016), ApJS 224, 24
  • Helper script: scripts/download_cosmos_auto.py

Planck CMB (Public data)


Detailed Scripts

1. SPARC Rotation Curves

Result: 156/156 galaxies (100%) | File: test_TMT_v2_SPARC_reel.py

This script tests TMT v2.0 formulation on the 175 real SPARC galaxies (156 retained after quality filtering).

Execution:

cd scripts
python test_TMT_v2_SPARC_reel.py

Expected output: data/results/TMT_v2_SPARC_reel_results.txt

Show source code
#!/usr/bin/env python3
"""
Test TMT v2.0 with REAL SPARC data (175 galaxies)
Calibration of k = a × (M/10^10)^b law

Data: http://astroweb.cwru.edu/SPARC/
Reference: Lelli, McGaugh & Schombert (2016)
"""

import numpy as np
from scipy.optimize import minimize_scalar, curve_fit
from pathlib import Path
import warnings
warnings.filterwarnings('ignore')

# Constants
G_KPC = 4.302e-6  # kpc (km/s)² / M_sun
C_KMS = 299792.458  # km/s

# TMT v2.0 parameters
R_C_DEFAULT = 18.0  # kpc - calibrated critical radius
N_DEFAULT = 1.6     # calibrated exponent

# ... [Full code available on GitHub]

:material-download: Download full script


2. r_c(M) Law

Result: r = 0.768 (p < 10⁻²¹) | File: investigation_r_c_variation.py

This script analyzes the dependence of critical radius r_c on baryonic mass.

Execution:

cd scripts
python investigation_r_c_variation.py

Discovered relation:

r_c(M) = 2.6 × (M_bary / 10¹⁰ M_☉)^0.56 kpc

Show source code
#!/usr/bin/env python3
"""
INVESTIGATION r_c: Why 5 vs 10 vs 18 kpc?

Analysis of different r_c values obtained by different methods.
Discovery: r_c depends on baryonic mass!

Author: Pierre-Olivier Després Asselin
Date: January 2026
"""

import numpy as np
from scipy.optimize import minimize
from pathlib import Path

# Constants
G_KPC = 4.302e-6  # kpc (km/s)² / M_sun

# ... [Full code available on GitHub]

:material-download: Download full script


3. k(M) Law

Result: R² = 0.64 | File: test_TMT_v2_SPARC_reel.py

The k(M) law is calibrated in the same script as rotation curves.

Calibrated law:

k = 3.97 × (M/10¹⁰)^(-0.48)


4. Weak Lensing Isotropy

Result: -0.024% | File: test_weak_lensing_TMT_vs_LCDM.py

This script tests if dark matter halos are isotropic (TMT v2.0) or aligned (TMT v1.0 refuted).

Execution:

cd scripts
python test_weak_lensing_TMT_vs_LCDM.py

Show source code
#!/usr/bin/env python3
"""
PRIMARY TEST: Asymmetric Halos - TMT vs ΛCDM Prediction

TMT v2.0 PREDICTION (ISOTROPIC):
  Halos are spherical, no preferential alignment.
  Expected correlation: r ≈ 0.00 ± 0.05

RESULT: r = -0.024% → TMT v2.0 VALIDATED (isotropic)
"""

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr, spearmanr

# ... [Full code available on GitHub]

:material-download: Download full script


5. COSMOS2015 Mass-Environment

Result: r = 0.150 | File: test_weak_lensing_TMT_vs_LCDM_real_data.py

Analysis of mass-environment correlation on real COSMOS2015 data.

Required data: Download COSMOS2015 from VizieR

Execution:

cd scripts
python test_weak_lensing_TMT_vs_LCDM_real_data.py

:material-download: Download full script


6. SNIa by Environment

Result: pred: 0.57% | File: test_3_predictions_TMT.py

Test of differential expansion H(z,ρ) via Type Ia supernovae in different environments.

Execution:

cd scripts
python test_3_predictions_TMT.py

Show source code
#!/usr/bin/env python3
"""
TEST OF 3 DISTINCTIVE TMT v2.0 PREDICTIONS

1. SNIa by environment: Delta_dL = 5-10% (void vs cluster)
2. ISW amplified +26% in supervoids
3. r_c(M) validation by cross-validation

Author: Pierre-Olivier Després Asselin
Date: January 2026
"""

import numpy as np
from scipy.integrate import quad
from scipy.stats import pearsonr, ttest_ind

H0 = 70  # km/s/Mpc
Omega_m = 0.315
Omega_Lambda = 0.685
beta = 0.4  # TMT parameter

# ... [Full code available on GitHub]

:material-download: Download full script


7. ISW Effect

Result: pred: 18.2% | File: calculate_ISW_improved.py

Calculation of the Integrated Sachs-Wolfe (ISW) effect for TMT vs ΛCDM.

Execution:

cd scripts
python calculate_ISW_improved.py

Show source code
#!/usr/bin/env python3
"""
Improved ISW (Integrated Sachs-Wolfe) effect calculation
Comparison TMT v2.0 vs LCDM

The ISW effect measures the gravitational potential variation
as CMB photons traverse structures:

Delta_T/T = 2/c² × ∫(dΦ/dt × dl)
"""

import numpy as np
from scipy.integrate import quad, odeint

H0 = 70.0          # km/s/Mpc
Omega_m = 0.315
Omega_Lambda = 0.685
beta = 0.4         # TMT parameter

# ... [Full code available on GitHub]

:material-download: Download full script


8. Hubble Tension

Result: 100% resolved | File: calibrate_TMT_v23_cosmologie.py

Demonstration of H₀ tension resolution via the temporon field.

Execution:

cd scripts
python calibrate_TMT_v23_cosmologie.py

Principle:

Φ_T(ρ=1) = 0 → CMB = ΛCDM exactly
Φ_T(ρ<1) > 0 → H_local > H_CMB (local void)

:material-download: Download full script


Complete Execution

To reproduce all tests:

# Clone repository
git clone https://github.com/cadespres/Maitrise-du-temps.git
cd Maitrise-du-temps

# Install dependencies
pip install numpy scipy matplotlib astropy

# Run main tests
cd scripts
python test_TMT_v2_SPARC_reel.py          # SPARC + k(M)
python investigation_r_c_variation.py      # r_c(M)
python test_3_predictions_TMT.py           # SNIa + ISW + validation
python test_weak_lensing_TMT_vs_LCDM.py   # Weak lensing
python calculate_ISW_improved.py           # Detailed ISW
python calibrate_TMT_v23_cosmologie.py     # H0 tension

Expected Results

Test Expected Value Meaning
SPARC 156/156 (100%) All galaxies improved vs Newton
r_c(M) r = 0.768 Strong r_c - mass correlation
k(M) R² = 0.64 Good power law fit
Weak Lensing ~0% Isotropic halos confirmed
SNIa <2% Δd_L Compatible with observations
ISW ~18% Detectable effect
H₀ 0σ tension Complete resolution

Overall statistical significance: p = 10⁻¹¹² (>15σ) | Chi² reduction: 81.2%

All scripts are under MIT license and can be freely used and modified.