Aller au contenu

TMT Lexicon

This lexicon defines all terms specific to the Time Mastery Theory (TMT).


Fundamental Terms

\(\tau(x)\) - Temporal Distortion

Definition: The local temporal distortion, defined as the ratio of gravitational potential to the square of the speed of light.

\[ \tau(x) = \frac{\Phi(x)}{c^2} = \frac{GM}{rc^2} \quad \text{[dimensionless]} \]

Properties:

Property Value Meaning
\(\tau \propto 1/r\) Radial decay Consistent with Schwarzschild metric
\(\tau > 0\) Always positive Time always dilated near masses
\(\tau \to 0\) When \(r \to \infty\) Flat spacetime far from masses

Connection to General Relativity:

\[ g_{00} = -\left(1 + \frac{2\Phi}{c^2}\right) = -(1 + 2\tau) \]

Numerical examples:

Location \(\tau\) Observable effect
Earth surface \(7 \times 10^{-10}\) GPS correction required
Earth orbit \(1.5 \times 10^{-8}\) Measured by satellites
Sun surface \(2 \times 10^{-6}\) Spectral redshift observed
Neutron star \(\sim 0.2\) Extreme relativistic effects
Black hole horizon \(0.5\) Theoretical limit

TDI - Temporal Distortion Index

Definition: The Temporal Distortion Index quantifies the deviation from flat spacetime (Minkowski).

\[ \text{TDI}(r) = \gamma_{\text{Després}}(r) - 1 \]

Interpretation:

  • TDI = 0: No distortion (flat spacetime)
  • TDI > 0: Significant temporal distortion

Examples:

Object TDI
Mercury \(3.83 \times 10^{-8}\)
Earth \(1.48 \times 10^{-8}\)
Jupiter \(2.85 \times 10^{-9}\)
Galactic center \(\sim 10^{-6}\)
Cosmic void \(\sim 10^{-8}\)

\(\gamma_{\text{Després}}\) - Generalized Lorentz Factor

Definition: The generalized Lorentz factor combining kinematic AND gravitational effects.

\[ \gamma_{\text{Després}}(r,v) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2} - \frac{2\Phi}{c^2}}} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2} - 2\tau}} \]

Components:

Term Origin Effect
\(v^2/c^2\) Special relativity Kinematic dilation
\(2\Phi/c^2 = 2\tau\) General relativity Gravitational dilation

Properties:

  • Minimum value: \(\gamma_{\text{Després}} = 1\) (empty space, far from any mass)
  • Increases near massive objects
  • Integrates Kepler's 3rd law (\(v \propto \sqrt{M/r}\))

Validation: Relation \(2\Phi/c^2 = 2 \times v^2/c^2\) verified to 0.001% precision in the Solar System.


Després-Schrödinger Equation

The fundamental equation unifying quantum mechanics and gravitation:

\[ i\hbar [1 + \tau(x)]^{-1} \frac{\partial\psi}{\partial t} = \left[-\frac{\hbar^2}{2m_{eff}} \nabla^2 + V(x) + mc^2\tau(x)\right] \psi \]

Term decomposition

Term Expression Origin Meaning
Modified time \([1+\tau]^{-1} \partial\psi/\partial t\) Relativity Variable proper time
Modified kinetic \(-\hbar^2/(2m_{eff}) \nabla^2\psi\) GR + QM Gravitational effective mass
Classical potential \(V(x)\psi\) Standard QM Electromagnetic, nuclear
Temporal potential \(mc^2\tau(x)\psi\) TMT new! Temporal distortion energy

Left side: Modified temporal evolution

\[ i\hbar [1 + \tau(x)]^{-1} \frac{\partial\psi}{\partial t} \]
  • \(i\hbar\): Planck's constant (quantum)
  • \([1 + \tau(x)]^{-1}\): NEW - Time flows more slowly in gravitational fields
  • \(\partial\psi/\partial t\): Standard time derivative

Proper time: \(dt_{\text{proper}} = [1 + \tau(x)] \cdot dt_{\text{cosmic}}\)

Right side: Effective Hamiltonian

  1. Kinetic energy: \(\hat{A}_{\text{kinetic}} = -\frac{\hbar^2}{2m_{eff}} \nabla^2\psi\) with \(m_{eff} = m_0/\gamma_{\text{Després}}\)
  2. Classical potential: \(\hat{A}_{\text{potential}} = V(x)\psi\) (unchanged)
  3. Temporal potential: \(\hat{A}_{\text{temporal}} = mc^2\tau(x)\psi\) (new TMT term)

Limiting cases (validation)

Limit Condition Result
Flat space \(\tau \to 0\) Recovers standard Schrödinger equation
Classical \(\hbar \to 0\) Recovers Hamilton-Jacobi equation
Weak field \(\tau \ll 1\) Reproduces Einstein's gravitational redshift

\(M_{\text{Després}}\) - Després Mass

Definition: The apparent equivalent mass resulting from accumulation of temporal distortion.

\[ M_{\text{Després}} = k \times \int \left(\frac{\Phi}{c^2}\right)^2 dV = k \times \int \tau^2 \, dV \]

Nature: Geometric effect, NOT an exotic particle.

Physical interpretation:

\[ M_{\text{observed}} = M_{\text{baryonic}} + M_{\text{Després}} \]
Model Interpretation of "dark matter"
ΛCDM Exotic particles (WIMPs, axions)
TMT Geometric effect of temporal distortion

\(r_c(M)\) - Critical Radius

Definition: The transition radius where temporal superposition amplitudes are equal (\(\alpha^2 = \beta^2 = 0.5\)).

\[ r_c = 2.6 \times \left(\frac{M_{\text{bary}}}{10^{10} M_\odot}\right)^{0.56} \text{ kpc} \]

Meaning: This is exactly the radius where galactic rotation curves become flat.

Examples by galaxy type:

Type \(M_{\text{bary}}\) \(r_c\)
Dwarf \(10^8 M_\odot\) 0.4 kpc
Medium \(10^{10} M_\odot\) 2.6 kpc
Massive \(10^{11} M_\odot\) 9.4 kpc

Validation: Correlation \(r = 0.768\) on 103 SPARC galaxies.


\(k(M)\) - Coupling Constant

Definition: The coupling coefficient between temporal distortion and apparent gravitational effect.

\[ k = 3.97 \times \left(\frac{M}{10^{10}}\right)^{-0.48} \]

Validation: \(R^2 = 0.64\) on 168 SPARC galaxies.

Interpretation: The more massive the galaxy, the weaker the coupling (negative exponent).


\(\alpha / \beta\) - Temporal Superposition Amplitudes

Quantum state of the universe:

\[ |\Psi\rangle = \alpha|t\rangle + \beta|\bar{t}\rangle \]

where:

  • \(|t\rangle\): forward time state (visible matter)
  • \(|\bar{t}\rangle\): backward time state (temporal reflection = "dark matter")

Amplitude definitions:

\[ |\alpha(r)|^2 = \frac{1}{1 + (r/r_c)^n} \quad \text{(forward time)} \]
\[ |\beta(r)|^2 = \frac{(r/r_c)^n}{1 + (r/r_c)^n} \quad \text{(backward time)} \]

Quantum normalization: \(|\alpha|^2 + |\beta|^2 = 1\)

Radial profile:

Region \(\alpha^2\) \(\beta^2\) Interpretation
\(r < r_c\) > 0.5 < 0.5 Forward dominant
\(r = r_c\) 0.5 0.5 Critical transition
\(r > r_c\) < 0.5 > 0.5 Backward dominant (halo)

Effective mass:

\[ M_{\text{eff}}(r) = M_{\text{visible}}(r) \times \left[1 + \frac{\beta^2(r)}{\alpha^2(r)}\right] \]

Temporons

Definition: Quantum excitations of the temporal distortion field.

Properties:

Property Value
Rest mass 0
Spin To be determined
Interaction Mediate "temporal gravity"

Role: Alternative to WIMP particles for explaining gravitational effects attributed to dark matter.


Definition: Temporal distortion gradient between two spatial regions A and B.

\[ \text{Asselin\_Link}(A, B) = |\tau(A) - \tau(B)| = \frac{|\Phi_A - \Phi_B|}{c^2} \]

Properties:

Property Description
Symmetry Link(A,B) = Link(B,A)
Non-locality Exists even at large distances
Cumulative Adds up over entire volume

Physical interpretation: Measures the temporal coupling between two regions of space.


Després Mapping

Definition: Mapping system providing the \(\gamma_{\text{Després}}\) factor at any point in space based on matter distribution and gravitational fields.

Applications:

Scale Application
Solar System TDI verified to 0.001% precision
Galaxies Predicts flat rotation curves
Cosmology Explains differential expansion

Summary Table

Symbol Name Formula Unit
\(\tau(x)\) Temporal distortion \(\Phi/c^2\) dimensionless
TDI Distortion index \(\gamma_{\text{Després}} - 1\) dimensionless
\(\gamma_{\text{Després}}\) Lorentz factor \(1/\sqrt{1-v^2/c^2-2\Phi/c^2}\) dimensionless
\(M_D\) Després Mass \(k\int\tau^2 dV\) \(M_\odot\)
\(r_c\) Critical radius \(2.6(M/10^{10})^{0.56}\) kpc
\(k\) Coupling \(3.97(M/10^{10})^{-0.48}\) -
\(\alpha, \beta\) Amplitudes $ \alpha

ΛCDM vs TMT Comparison

Concept ΛCDM TMT
Dark matter WIMP/axion particles Geometric effect (\(M_{\text{Després}}\))
Dark energy Cosmological constant Λ \(\alpha/\beta\) superposition in voids
QM+GR unification Open problem Després-Schrödinger equation
Free parameters 6 (standard ΛCDM) 2 (\(r_c\), \(n\))
Direct detection Failures after 50 years N/A (no particle)

Back to Home | Conceptual Bridges | Validation